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Abstract: Alzheimer's disease (AD) is characterized by several pathologies, this disease is a neuropathological lesion in 
brain. Indeed, a wealth of evidence suggests that β-amyloid is central to the pathophysiology of AD and is likely to play 
an early role in this intractable neurodegenerative disorder. AD is the most prevalent form of dementia, and current 
indications show that twenty-nine million people live with AD worldwide, a figure expected rise exponentially over the 
coming decades. Clearly, blocking disease progression or, in the best-case scenario, preventing AD altogether would be of 
benefit in both social and economic terms. However, current AD therapies are merely palliative and only temporarily slow 
cognitive decline, and treatments that address the underlying pathologic mechanisms of AD are completely lacking. While 
familial AD (FAD) is caused by autosomal dominant mutations in either amyloid precursor protein (APP) or the 
presenilin (PS1, PS2) genes. First, we revised 2D QSAR, 3D QSAR, CoMFA, CoMSIA and Docking of β and γ-secretase 
inhibitors. Next, we review 2D QSAR, 3D QSAR, CoMFA, CoMSIA and docking for GSK-3α and GSK-3β with 
different compound to find out the structural requirements.  
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INTRODUCTION 

 Pathologically, Alzheimer's disease (AD) is characterized 
by the accumulation of amyloid beta peptide (Aβ), as 
fibrillar plaques and soluble oligomers in high-order 
association brain regions. The presence of intracellular 
neurofibrillary tangles, neuroinflammation, neuronal 
dysfunction and death further characterizes this disease. 
Mounting evidence suggests that Aβ plays a critical early 
role in AD pathogenesis, and the basic tenant of the amyloid 
(or Aβ cascade) hypothesis is that Aβ aggregates trigger a 
complex pathological cascade which leads to neurodegene-
ration [1]. A strong genetic correlation exists between FAD 
and the 42 amino acid Aβ form (Aβ42; reviewed in [2-4]). 
Aβ is derived from APP and mutations in APP and PS 
increase Aβ42 production and cause FAD with nearly 100% 
penetrance. Down's syndrome (DS) patients, who have an 
extra copy of the APP gene on chromosome 21, and FAD 
families with a duplicated APP gene locus [5], exhibit total 
Aβ overproduction and all develop early-onset AD. In FAD, 
the Aβ42 increase is present years before AD symptoms 
arise, suggesting that Aβ42 is likely to initiate AD 
pathophysiology. The robust association of Aβ42 
overproduction with FAD argues strongly in favor of a 
critical role for Aβ42 in the etiology of AD, including in 
SAD. Fibrillar and oligomeric forms of Aβ appear 
neurotoxic in vitro and in vivo. Importantly, in specific 
transgenic (Tg) mouse models of AD the lack of Aβ 
correlates with the absence of neuronal loss and improved 
cognitive function [6-8]. Such data provides direct evidence  
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for the amyloid hypothesis in vivo, and also indicates that Aβ 
is directly responsible for neuronal death. Consequently, 
strategies to lower Aβ42 levels in the brain are anticipated to 
be of therapeutic benefit in AD. 

 Aβ peptide is generated following the sequential cleavage 
of APP by β- and γ-secretase in the amyloidogenic pathway 
[9, 10]. Aβ genesis may be precluded if APP is cleaved by α-
secretase within the Aβ domain in the non-amyloidogenic 
pathway (see Fig. 1). Recently, the secretases have been 
identified and the β-secretase is known to be β-site APP 
cleaving enzyme I (BACE1) [11-14], a novel aspartyl 
protease. BACE1 cleavage of APP is a pre-requisite for Aβ 
formation. Aβ genesis is initiated by BACE1 cleavage of 
APP at the Asp+1 residue of the Aβ sequence to form the N-
terminus of the peptide. This scission liberates two cleavage 
fragments: a secreted APP ectodomain, APPsβ and a 
membrane-bound carboxyl terminal fragment (CTF). In 
many instances, an increase in non-amyloidogenic APP 
metabolism is coupled to a reciprocal decrease in the 
amyloidogenic processing pathway, and vice-versa, as the α- 
and β-secretase moieties compete for APP substrate [10, 13]. 
In the case of γ-secretase is a multi-subunit protease 
complex, itself an integral membrane protein, those cleaves 
single-pass transmembrane proteins at residues within the 
transmembrane domain. The most well-known substrate of 
gamma secretase is amyloid precursor protein, a large 
integral membrane protein that, when cleaved by both 
gamma and beta secretase, produces a short 39-42 amino 
acidpeptide called amyloid beta whose abnormally folded 
fibrillar form is the primary component of amyloid plaques 
found in the brains of Alzheimer's disease patients. Gamma 
secretase is also critical in the related processing of the 
Notch protein [15, 16]. 
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 Given that both secretase are the initiating enzyme in Aβ 
generation, and putatively rate-limiting, it is considered a 
prime drug target for lowering cerebral Aβ levels in the 
treatment and/or prevention of AD. Prior to its identification, 
numerous studies were undertaken to define the 
characteristics of β-secretase activity. Although the majority 
of body tissues exhibit β-secretase activity [17], highest 
activity levels were observed in neural tissue and neuronal 
cell lines [18]. Indeed, β-secretase appeared to predominate 
in neurons, with the level of β-secretase activity appearing 
lower in astrocytes [19]. Data showing that β-secretase 
efficiently cleaved only membrane-bound substrates [20] 
indicated that the enzyme was likely membrane-bound or 
closely associated with a [21] prevent the buildup of beta-
amyloid and may help slow or stop the disease However, 
current AD therapies are merely palliative and only 
temporarily slow cognitive decline, and treatments that 
address the underlying pathologic mechanisms of AD are 
completely lacking. 

 In the last years, a number of publications have appeared 
suggesting GSK-3 as a target for the treatment of AD. Two 
isoforms of GSK-3 exists, GSK-3α and GSK-3β, both share 
a high homology at their catalytic site but the α form possess 
an extended N-terminus with respect to the β form [22, 23]. 
The phosphorylation of proteins by GSK-3 is an important 
link in neural function [24-26]. Two are the characteristic 
neuropathological hallmarks of AD, Neurofibrillary Tangles 
(NFT´s) and increase production of amyloid beta (Aβ) 
peptides, where NFT´s are composed of highly 
phosphorylated form of the microtubule associated protein 
tau [27] and studies have shown that GSK-3 is one of the 
main in vivo players of phosphorylation of tau protein [28]. 
It has been reported that Lithium, a GSK-3 inhibitor, block 
production of Aβ peptides by interfering with APP cleavage 

at γ-secretase step, where the target for Lithium is GSK-3α 
[21, 22]. Phiel et al. [21] showed that selective reduction in 
concentration of the α isoform led to a decrease in the 
concentration of Aβ40 and Aβ42, primary constituents of 
amyloid plaques in AD. Thus inhibition of GSK-3α could 
potentially provide dual therapy against AD, preventing the 
buildup of amyloid plaques and of neurofibrillary tangles 
[21, 29, 30]. 

 GSK-3β is a serine/threonine kinase and is thought to be 
a key factor for aberrant tau phosphorylation [31]. Activated 
GSK-3β coexists with progression of NFT´s and 
neurodegeneration in the AD brain [32-34]. A conditional 
GSK-3β overexpressing transgenic mouse exhibits persistent 
tau hyperphosphorylation, pretangle-like somatodendritic 
localization of tau, neuronal death in hippocampus and 
cognitive deficits [35, 36]. These studies suggest that GSK-
3β is associated with AD progression, and GSK-3β 
inhibition is expected to be a promising therapeutic approach 
for AD. 

 In this sense, quantitative structure-activity relationships 
(QSAR) could play an important role in studying these β and 
γ-secretase inhibitors. QSAR models are necessary in order 
to guide the β and γ-secretase inhibitors. 

 On the other hand, QSAR models can be used to explore 
the relationships between the structural spaces of compounds 
as inhibitors for specific enzymes, such as MAO inhibitors 
[37], HIV-1 integrase inhibitors [38], and/or protease 
inhibitors [39] or tyrosinase inhibitors [40-42]. In fact, 
Almost all QSAR techniques are based on the use of 
molecular descriptors, which are numerical series that codify 
useful chemical information and enable correlations between 
statistical and biological properties [43, 44]. Recently, the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (1). APP metabolism by the secretase enzymes. 
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field has moved from small molecules to proteins and other 
systems. For instance, González-Díaz et al. discussed the use 
of these methods but only from the point of view of proteins 
[45]. Later, some groups published different papers in one 
special issue on QSAR but also restricted to the field of 
protein and proteomics [46-52]. In other recent issue, guest-
edited by González-Díaz [53] appeared a series of papers 
devoted to QSAR/QSPR techniques for low-molecular-
weight drugs [53-62]. Most recently, Prado-Prado et al. [63] 
published a mt-QSAR for anti-parasitic drugs. This year was 
published other issue [64] focused on QSAR/QSPR models 
and graph theory used to approach Drug ADMET processes 
and Metabolomics [65-72]. Last, one of the most recent 
issues published is devoted to discuss the applications of 
QSAR in Pharmaceutical Design [73-82]. In the present 
work, we firstly revised the state-of-art on the design, 
synthesis, and biological assay of β and γ-secretase 
inhibitors. Next, we review previous works based on 2D-
QSAR, 3D-QSAR, CoMFA, CoMSIA and docking 
techniques, which studied different compounds to find out 
the structural requirements. The topics reviewed, discussed, 
and/or reported in this paper are: 

1. Studies of γ-secretase inhibitors 
1.1. Synthesis and Theoretical studies of γ-secretase 

inhibitors 
1.2. Design and synthesis of pyridine derivatives as 

BACE-1 inhibitors 
1.3. Discover non-peptide inhibitors of BACE-1 

using VHTS 
1.4. Distinct Pharmacological Effects of Inhibitors of 

γ-secretase 
1.5. 3D-QSAR studies of γ-secretase inhibitors 
1.6. MD simulations of Aβ fibril interactions 

2. Studies of β-secretase inhibitors 
2.1. Synthesis, Theoretical studies and Biological 

Assay of β-secretase inhibitors 
2.2. Models of novel pyridinium-based potent β-

secretase inhibitory leads 
2.3. CoMFA & CoMSIA of hydroxyethylamine 

derivatives as BACE-1 inhibitors 
2.4. Virtual Screening and Protonation States at 

Asp32 and Asp228 
2.5. Docking scoring function based on 2D-

descriptors 
2.6. Induced-Fit Docking of Peptidic and Pseudo-

peptidic BACE-1 inhibitors 
3. Studies of GSK-3α inhibitors 

3.1. 2D-QSAR for 3-anilino-4-phenylmaleimides 
3.2. 3D-QSAR and docking of 3-anilino-4-

phenylmaleimides 
3.3. QSAR studies of Some GSK-3α Inhibitory 

pyrimidines 
4. Studies of GSK-3β inhibitors 

4.1. Design, synthesis and SAR of oxadiazole 
derivatives 

4.2. Linear/Nonlinear Regression Methods for 
Prediction of Glycogen 

4.3.  Molecular modeling, docking and 3D-QSAR 
studies for maleimides 

4.4. Molecular docking and biological testing of 
inhibitors of GSK-3β 

4.5. 3D-QSAR Modelling of Paullones 
4.6. Modeling of Binding Mode of Benzo[e]isoindole-

1,3-diones 

DISCUSSION 

QSAR and Theoretical Studies for Neurodegene 
Inhibitors 

 In this section we updated the contents presented in our 
recent review published in Current Drugs Metabolism [83]. 
The high number of possible candidates to β-secretase 
inhibitors creates the necessity of Quantitative Structure-
Activity Relationship models in order to guide the β-
secretase inhibitor synthesis. In this work, we revised 
different computational studies for a very large and 
heterogeneous series of β-secretase. First, we revised QSAR 
studies with conceptual parameters. Next, using method of 
regression analysis; and QSAR studies in order to understand 
the essential structural requirement for binding with receptor. 
Next, we review 3D QSAR, CoMFA and CoMSIA with 
different compound to find out the structural requirements 
for β-secretase inhibitors. 

1. Studies of γ-Secretase Inhibitors 

1.1. Design and Synthesis of Pyridine Derivatives as 
BACE-1 Inhibitors 

 Soo-Jeong Choi, et al. [84], had designed and 
synthesized of 1,4-dihydropyridine derivatives as BACE-1 
inhibitors using a 1,4-dihydropyridine (DHP) scaffold. They 
had synthesized new inhibitors of BACE-1 (the protein that 
has been shown to be an attractive therapeutic target in 
Alzheimer's disease) by modifying the known BACE 
inhibitor 2 containing a hydroxyethylamine (HEA) motif, see 
Fig. (2). Using structure-based drug design based on 
computer-aided molecular docking, the isophthalamide ring 
was replaced with a 1,4-dihydropyridine ring as a brain-
targeting strategy. After their synthesis, the dihydropyridine 
derivatives were evaluated their BACE-1-inhibitory 
activities using a cell-based, reporter gene assay system that 
measures the cleavage of alkaline phosphatase (AP)-APP 
fusion protein by BACE-1. 

 Molecular modeling was performed using CDOCKER, a 
CHARMm based molecular dynamics docking algorithm 
Discovery Studio 2.0 (Accelrys). The BACE-1 structure co-
crystallized was obtained from the PDBdata bank (PDB 
code: 2B8L). A protein clean process and a CHARMm-force 
field were sequentially applied. The area around 2 was 
chosen as the active site, with the radius set as at 8-A. After 
removing 2 from the structure of the complex, a binding 
sphere in the three axis directions was constructed around 
the active site. Al default parameters were used in the 
docking process. CHARMm based molecular dynamics 
(1000 steps) were used to generate random ligand 
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Fig. (2). Synthesis of 1-methylsulfonamide-2,6-dimethyl-1,4-dihydropyridine derivatives.  
Reagent: (a) NH4OAc, Ethanol, 90 ºC, 24 h, 98%; (b) Methane sulfonylchloride, NaH, DMF, 0-60 ºC, 4 h, 35%; (c) AlCl3, Anisole, DCM, -
50 ºC to RT, 2 h, 21%; (d) R-methylbenzylamine, PyBOP, DIPA, DCM, 1 h, 70%; (e) AlCl3, Anisole, DCM, �50 �C to RT, 2 h, 30%; (f) 
Compound 5a, PyBOP, DIPEA, DCM, 15 min, 65%. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (3). Overlay of inhibitor 2 (green) and inhibitor 9a in the BACE-1 active site, b. Interactions of 9a in the active site of BACE-1- 
Hydrogen bonds are shown with dotted lines (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article). 

conformations and the position of any ligand was optimized 
in the binding site using rigid body rotation followed by 
simulated annealing at 700 K. Final energy minimization 
was set as the full potential mode. The final binding 
conformation was determined on the basis of energy (see 
Fig. 3). 

 Based on molecular docking results, we designed 1,4-
DHP derivatives as BACE-1 inhibitors using five strategies. 

These were replacement of the bulky a-methylbenzamide 
group in 2 with a benzyl ester or smaller acetyl group for 
binding in the S3 pocket; modification of the sulfonamide 
group in the aromatic scaffold of 2 with alkyl ester or amide 
groups, maintaining the important hydrogen bonding with 
Asn233 in the S2 binding pocket; incorporation of additional 
hydrophobic interactions into the S1 binding pocket by 
introduction of alkyl or aryl groups, including methyl, ethyl, 
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propyl, isopropyl, and phenyl groups; alteration of the 
cyclopropyl group at the R4 position to other aromatic 
groups, thus changing hydrophobic interactions in the S20 
binding pocket by extension toward the prime-side of the 
enzyme; and, alterations at the 2 and 6 positions of the 1,4-
DHP scaffold by synthesis of 2-monomethyl and 2,6-
unsubstituted analogs. 

 Their results show that most of the 1,4-DHP analogs 
showed BACE-1-inhibitory activities with IC50 values in the 
range 8e30 mM, suggesting that the 1,4-DHP skeleton may 
be utilized to develop brain-targeting BACE-1 inhibitors. 

1.2. Discover Non-Peptide Inhibitors of BACE-1 Using 
VHTS 

 A novel series of isatin-based inhibitors of b-secretase 
(BACE-1) using a virtual highthroughput screening approach 
have identified by Moka et al. [85]. Structure-activity 
relationship studies revealed structural features important for 
inhibition. Docking studies suggest these inhibitors may bind 
within the BACE-1 active site through H-bonding 
interactions involving the catalytic aspartate residues. 

 They used AutoDock to separately dock the two 
proposed favored conformations 19 and 20 of compound 1 
into the active site of BACE-1 (PDB code 1M4H). While the 
docking of conformer 19 did not give any solutions 
consistent with the observed biological activity, docking of 
conformer 20 revealed a binding pose which was consistent 
with the observed activities of compounds 1-8 (see Fig. 4). 

 This figure shows the lowest-energy binding pose 
identified for conformer 20 within BACE-1. It is noteworthy 
that an analogous binding pose was also identified using 
eHiTS. The acetamide moiety is predicted to occupy the 
catalytic site, with the acetamide N-H acting as an H-bond 
donor to the catalytic residue Asp228 (H-bond length = 1.86 
ÅA 0). 

 The phenol unit is predicted to make an H-bond contact 
with the backbone nitrogen of Thr232 (H-bond length = 2.20 
ÅA 0) and to partly occupy the P2 substrate pocket. This 
feature implies the phenol might be involved in both the 
formation of the intermolecular H-bonding network, and also 
in intermolecular H-bonding interactions with the enzyme. 
The nitro group in 1 is predicted to extend into the P4 
pocket, possibly participating in weak H-bonding with the 
side chain of Arg307 (H-bond length = 2.13 ÅA 0), 
consistent with the slight decrease in the binding affinity 
exhibited by compound. 

 In summary, the authors, using the virtual high-
throughput screening software eHiTS, have discovered a 
novel non-peptidic inhibitor of BACE-1 based on an isatin 
motif. Studies of the biological activity of structural variants 
in combination with in silico docking suggest the inhibitor 
adopts a planar conformation, which is stabilized by 
intramolecular H-bonding from the phenolic moiety. 
Additionally, binding to BACE-1 appears to involve H-
bonding interactions between the p-tolylamide of 1 and the 
catalytic residue Asp228. 

 A recent report detailing the discovery of a series of 
potent small molecule BACE-1 inhibitors compares the 
ligand efficiency (LE) of a range of reported inhibitors of 
BACE-1. In this study, the authors noted that despite the 
high potency of the previously reported peptide-based 
BACE-1 inhibitors such as OM99-2 (Ki = 1.6 nM), the 
relatively high molecular weights of these systems (e.g., 
OM99-2 has a molecular weight of 893) often result in them 
having relatively poor ligand efficiency (e.g., LE = 0.19 for 
OM99-2). For this study, although still somewhat below the 
preferred minimum value of LE = 0.3, compound 1 
(molecular weight = 461) has LE = 0.22 and therefore, is 
closer to the preferred value than the potent but considerably 
larger peptidic inhibitors reported previously. They have 
demonstrated that eHiTS is a powerful screening tool to 

 

 
 

 
 

 
 

 
 

 
 

 
 
Fig. (4). Binding pose of 1 (corresponding to conformer 20) in the BACE-1 active site generated using AutoDock. 
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identify biologically active compounds quickly and 
efficiently. 

1.3. Distinct Pharmacological Effects of Inhibitors of γ -
Secretase 

 T. Sato, et al. [86], have report that helical peptide 
inhibitors designed to mimic SPP substrates and interact with 
the SPP initial substrate-binding site (the “docking site”) 
inhibit both SPP and γ-secretase, but with submicromolar 
potency for SPP. SPP was labeled by helical peptide and 
transition-state analogue affinity probes but at distinct sites. 
Nonsteroidal anti-inflammatory drugs, which shift the site of 
proteolysis by SPP and γ-secretase, did not affect the 
labeling of SPP or γ-secretase by the helical peptide or 
transition-state analogue probes. On the other hand, another 
class of previously reported γ-secretase modulators, naphthyl 
ketones, inhibited SPP activity as well as selective 
proteolysis by γ-secretase. These naphthyl ketones 
significantly disrupted labeling of SPP by the helical peptide 
probe but did not block labeling of SPP by the transition-
state analogue probe. With respect to γ-secretase, the 
naphthyl ketone modulators allowed labeling by the 
transition-state analogue probe but not the helical peptide 
probe. Thus, the naphthyl ketones appear to alter the docking 
sites of both SPP and γ-secretase. These results indicate that 
pharmacological effects of the four different classes of 
inhibitors (transition-state analogues, helical peptides, 
nonsteroidal anti-inflammatory drugs, and naphthyl ketones) 
are distinct from each other, and they reveal similarities and 
differences with how they affect SPP and γ-secretase (see 
Fig. 5). 

1.4. 3D-QSAR studies of γ-secretase inhibitors 

 A 3D-QSAR analysis on a series of 67 benzodiazepine 
analogues reported as γ-secretase inhibitors using molecular 
field analysis (MFA), with G/PLS to predict steric and 

electrostatic molecular field interaction for the activity have 
performed by T. Sammi et al. [87]. 

 The MFA study was carried out using a training set of 54 
compounds. The predictive ability of model developed was 
assessed using a test set of 13 compounds (r2

pred as high as 
0.729). The analyzed MFA model has demonstrated a good 
fit, having r2 value of 0.858 and cross validated coefficient, 
r2

cv value as 0.790. The analysis of the best MFA model 
provided insight into possible modification of the molecules 
for better activity. 

 
Fig. (6). Stereoview of all the aligned molecules. 

 To obtain effective 3D-QSAR models the method that 
they used for performing the alignment was the maximum 
common subgroup (MCSG). This method looks at molecules 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. (5). Schematic mechanisms of inhibitor. Transition-state analogue (TSA) inhibitor targets the active site, and helical peptide docking site 
inhibitor (DSI) prevents initial substrate interaction with the protease. NSAIDs target the substrate, and naphthyl ketone inhibitors (NKI) 
disrupt the initial interaction between substrate and protease (selectively for APP in the case of ɣ-secretase). 
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as points and lines, and uses the techniques of graph theory 
to identify patterns. It finds the largest subset of atoms in the 
shape reference compound that is shared by all the structures 
in the data set and uses this subset for alignment. A rigid fit 
of atom pairing was performed to superimpose each structure 
so that it overlays the shape reference compound. The most 
active bold-faced portion of molecule 1, was used as the 
template for the superposition (see Fig. 6). 

 G/PLS technique available in QSAR environment of 
Cerius2 software was used to perform regression analysis of 
data. As there were large numbers of points used as 
independent variables, genetic partial least squares (G/PLS) 
were used to derive QSAR models. G/PLS is derived from 
two QSAR calculation methods: Genetic function 
approximation (GFA) and partial least squares (PLS). The 
GFA algorithm approach builds multiple models rather than 
single model; it automatically selects which features are to 
be used in model. Further it is better at discovering 
combinations of features that take advantage of correlations 
between multiple features. In PLS, variables might be 
overlooked during interpretation or in designing the next 
experiment even though cumulatively they are important. It 
gives a reduced solution, which is statistically more robust 
than multiple linear regressions (MLA). The linear PLS 
model finds “new variables” (latent variables or X scores) 
which are linear combinations of original variables. To avoid 
over fitting, a strict test for the significance of each 
consecutive PLS component is necessary and then stopping 
when the components are non-significant. Cross validation a 
practical and reliable way of testing this significance. G/PLS 
combines the best features of GFA and PLS. In GFA; 
equation models have a randomly chosen proper subset of 
independent variables. As a result of multiple linear 
regressions (MLA) on each model, the best ones become the 

next generation and two of them produce an offspring. This 
was repeated 50,000 (default, 5000 times). For other settings, 
all defaults were used. Application of G/PLS thus allows the 
construction of large QSAR equations while still avoiding 
over fitting and eliminating most variables. The best model 
was selected on statistical measures such as data points (n), 
square correlation coefficient (r2), cross-validated correlation 
coefficient (r2

cv), predicted correlation coefficient (r2
pred), 

predicted sum of squares (PRESS), bootstrap correlation 
coefficient (r2

obs) (see Table 1). 

1.5. MD Simulations of Aβ Fibril Interactions 

 N.J. Brucea, et al., use molecular dynamics simulations 
to compare the model of interaction of an active (LPFFD) 
and inactive (LHFFD) β -sheet breaker peptide with an Aβ 
fibril structure from solid-state NMR studies. This study is 
based in the matter that have accumulation and aggregation 
of the 42-residue amyloid-β (Aβ) protein fragment, which 
originates from the cleavage of amyloid precursor protein by 
β and γ secretase, correlates with the pathology of 
Alzheimer’s disease (AD). Possible therapies for AD include 
peptides based on the Aβ sequence, and recently identified 
small molecular weight compounds designed to mimic these, 
that interfere with the aggregation of Aβ and prevent its toxic 
effects on neuronal cells in culture. Here, they found that 
LHFFD had a weaker interaction with the fibril than the 
active peptide, LPFFD, from geometric and energetic 
considerations, as estimated by the MM/PBSA approach. 
Cluster analysis and computational alanine scanning 
identified important ligand-fibril contacts, including a 
possible difference in the effect of histidine on ligand-fibril 
π-stacking interactions, and the role of the proline residue in 
establishing contacts that compete with those essential for 
maintenance of the inter-monomer β -sheet structure of the 

Table 1. Various Statistical Parameters Along with their Numerical Value Obtained for the Best Model 

 Parameter Value 

1. Data points (n) 54 

2. Square of correlation coefficient (r2) for training set 0.858 

3. Leave one out cross validated correlation coefficient (r2
cv) 0.790 

4. Predicted sum of squares (PRESS) 16.086 

5. Number of PLS components (C) 5 

6. 

7. 

8. 

Simple correlation coefficient (r2
 pred) for test set 

Predicted correlation coefficient (r2 pred) 

Bootstrap correlation coefficient (r2
 bs) 

0.729 

0.685 

0.843 

9. Lest Square error (LSE) 0.208 

10. Predicted root mean square error (RMSE pred) 0.579 

11. Slope of regression line of observed vs predicted activity passing through origin(k) 1.004 

12. Slope of regression line of predicted vs observed activity passing through origin(k’) 0.987 

13. Correlation coefficient for regression line of observed vs predicted activity passing through origin(R2 0) 0.999 

14. Correlation coefficient for regression line of predicted vs observed activity passing through origin 0.998 
aCorrelation coefficient calculated using Eq. 3. 
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fibril. Their results show that molecular dynamics 
simulations can be a useful way to classify the stability of 
docking sites. These mechanistic insights into the ability of 
LPFFD to reverse aggregation of toxic Aβ will guide the 
redesign of lead compounds, and aid in developing realistic 
therapies for AD and other diseases of protein aggregation 
(see Fig. 7). 

2. Studies of β-Secretase Inhibitors 

2.1. Models of Novel Pyridinium-Based Potent β-Secretase 
Inhibitory Leads 

 In one article by Al-Nadaf et al. [88] explore the 
pharmacophoric space of 129 known BACE inhibitors have 

potential as anti-Alzheimer’s disease treatments. The QSAR 
analysis employed to select optimal combination of 
pharmacophoric models and 2D physicochemical descriptors 
capable of explaining bioactivity variation (r2 = 0.88, F = 
60.48, r2

LOO = 0.85, r2
PRESS against 25 external test inhibitors 

= 0.71). They were obliged to use ligand efficiency as the 
response variable because the logarithmic transformation of 
bioactivities failed to access self-consistent QSAR models. 
The authors constructed three pharmacophoric models 
emerged in the successful QSAR equation suggesting at least 
three binding modes accessible to ligands within BACE 
binding pocket. The QSAR equation and pharmacophoric 
models were validated through ROC curves (see Table 2), 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Comparison of docked poses of (a) active peptide LPFFD (b) inactive peptide LHFFD; and comparison of MD-refined poses of (c) 
active peptide LPFFD and (d) inactive peptide LHFFD. 

Table 2. ROCa Performances of QSAR-Selected Pharmacophores as 3D Search Queries 

Pharmacophore ROCa/AUCb ACCc SPCd TPRe FNRf 

Hypo10/10 0.982 0.961 0.988 0.28 0.011345 

Hypo6/18 0.981 0.961 0.975 0.6 0.024311 

Hypo1/21 0.738 0.961 0.9611 0.96 0.038898 
aROC: receiver operating characteristic, bAUC: area under the curve, cACC: overall accuracy, dSPC: overall specificity, eTPR: overall true positive rate, fFNR: overall false negative 
rate. 
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and were employed to guide synthesis of novel pyridinium-
based BACE inhibitors.  

2.2. CoMFA & CoMSIA of Hydroxyethylamine Derivatives 
as BACE-1 Inhibitors 

 Pandey et al. [89] were developed three-dimensional 
quantitative structure-activity relationship (3D-QSAR) 
models based on comparative molecular field analysis 
(CoMFA) and comparative molecular similarity indices 
analysis (CoMSIA), on a series of 43 hydroxyethylamine 
derivatives, acting as potent inhibitors of β-site amyloid 
precursor protein (APP) cleavage enzyme (BACE-1). They 
used a crystal structure of the BACE-1 enzyme (PDB ID: 
2HM1) with one of the most active compound presented in 
this paper was available, and we assumed it to be the 
bioactive conformation of the studied series, for 3D-QSAR 
analysis. Statistically significant 3D-QSAR model was 
established on a training set of 34 compounds, which were 
validated by a test set of 9 compounds. For the best CoMFA 
model, the statistics are, r2 = 0.998, r2

cv = 0.810, n = 34 for 
the training set and r2

pred = 0.934, n = 9 for the test set. For 
the best CoMSIA model (combined steric, electrostatic, 
hydrophobic, and hydrogen bond donor fields), the statistics 
are r2 = 0.978, r2

cv = 0.754, n = 34 for the training set and 
r2

pred = 0.750, n= 9 for the test set, see Table 3. The resulting 
contour maps, produced by the best CoMFA and CoMSIA 
models, were used to identify the structural features relevant 
to the biological activity in series of analogs. The data 
generated from the present study will further help to design 
novel, potent, and selective BACE-1 inhibitors. 

Table 3.  PLS Summary of CoMFA and CoMSIA Results 

Statistical parameters  CoMFA  CoMSIA  

 (S E)  (S EHD)  

Number of molecules in training set  34  34  

Number of molecules in test set  9  9  

r2 cv  0.810  0.754  

NOC  7  4  

SEE  0.063  0.204  

r2  0.998  0.978  

F-test  2009.08  324.673  

r2 bs  0.999  0.989  

SDbs  0.001  0.006  

r2 pred  0.934  0.750  

Percentage of field contributions    

S  47.4  24.8  

E  52.6  34.0  

H  −  26.3  

D  −  14.9  

Abbreviations: S (steric field), E (electrostatic field), H (hydrophobic field), D 
(hydrogen bond donor field) r 2

cv =Cross-validated correlation coefficient by PLS LOO 
method, NOC=Optimum number of components as determined by PLS LOO cross-
validation study, SEE=Standard error of estimate, r2 =Conventional correlation 
coefficient, r2

bs =Correlation coefficient after 100 runs of boot strapping, SDbs 
=Standard deviation from 100 runs of bootstrapping, r2

pred =Predictive correlation 
coefficient. 

2.3. Virtual Screening and Protonation States at Asp32 and 
Asp228 

 M. Keseru et al. [90] performed a comparative virtual 
screen for β-secretase (BACE1) inhibitors using different 
docking methods (FlexX and FlexX-Pharm), scoring 
functions (Dock, Gold, Chem, PMF, FlexX), protonation 
states (default and calculated), and protein conformations 
(apo and ligand bound). Apo and ligand bound 
conformations of BACE1 were both found to be suitable for 
virtual screening. Assigning calculated protonation states to 
catalytic Asp32 and Asp228 residues resulted in significant 
improvement of enrichment factors as calculated at 1% of 
the ranked database. The authors used 1FKN to obtain no 
enrichment by FlexX/D-Score that was improved to ligand 
when considering calculated protonation states. They also 
show that combining calculated protonation states with 
pharmacophore constraints using FlexX-Pharm/D-Score 
improved enrichment further to ligand. Enrichments reported 
in this study suggest our screening protocol will be effective 
in the virtual screening of large compound libraries for 
BACE1 inhibitors. 

2.4. Docking Scoring Function Based on 2D-Descriptors 

 In this paper Hetényi [91] showed a key step in the 
molecular engineering of such potent lead compounds is the 
prediction of the energetics of their binding to the 
macromolecular targets. Although sophisticated 
experimental and in silico methods are available to help this 
issue, the structure-based calculation of the binding free 
energies of large, flexible ligands to proteins is problematic. 
In this study, a fast and accurate calculation strategy is 
presented; following modification of the scoring function of 
the popular docking program package AutoDock and the 
involvement of ligand based two-dimensional descriptors. 
Quantitative structure-activity relationships with good 
predictive power were developed. The best results of this 
paper were shown in Table 4. Thorough cross-validation 
tests and verifications were performed on the basis of 
experimental binding data of biologically important systems. 
The capabilities and limitations of the ligand based 
descriptors were analyzed. According to the authors the 
application of these results in the early phase of lead design 
will contribute to precise predictions, correct selections, and 
consequently a higher success rate of rational drug 
discovery. 

2.5. Induced-Fit Docking of Peptidic and Pseudo-Peptidic 
BACE-1 Inhibitors 

 Inhibition of β-secretase (BACE 1) has recently been 
investigated as a promising therapeutic approach in the 
treatment of Alzheimer’s disease, and a growing number of 
BACE 1 inhibitors and crystal structures of BACE 
1/inhibitors complexes have been reported. Moitessier et al. 
[92] report herein a predictive computational method and its 
application to potential BACE 1 inhibitors. Using a training 
set of 50 known highly flexible inhibitors, they developed a 
docking method that accounts for the flexibility of both the 
protein and the inhibitors. Protein flexibility is accounted for 
using a specifically designed genetic algorithm. In this paper 
developed a scoring function consisting of force field 
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evaluation of the inhibitor/protein interactions and two 
additional terms for hydrogen bonding and entropy change 
upon binding. Discarding three outliers from the training set, 
the protocol was found to perform well with an rmsd of 1.19 
kcal/mol and r2 value of 0.789. Evaluation of the predictive 
power was carried out by virtual screening of 80 synthetic 
compounds. The significant enrichment at the top of the 
ranking list in active compounds demonstrated the ability of 
the docking and scoring protocol to rank the compounds 
relative to their activities. 

3. Studies of GSK-3α Inhibitors 

3.1. 2D-QSAR for 3-anilino-4-phenylmaleimides 

 In this paper, Sivaprakasam et al. [30] reported a 2D-
QSAR exploration of the physicochemical (hydrophobic, 
electronic, and steric) and structural requirements among 3-
anilino-4-phenylmaleimides toward GSK-3α binding. Using 
Fujita-Ban and Hansch QSAR analysis, electronic and steric 
interactions at the 4-phenyl ring and hydrophobic 
interactions at the 3-anilino ring were shown to be crucial. 
Hansch type QSAR was still widely used in the lead 
optimization stage of synthetic and other projects. 

 Fujita-Ban analysis of 3-anilino-4-phenylmaleimides 
revealed that certain structural features such as Cl, OCH3, 
and NO2 mono substitution at any position around the 4-
phenyl ring were favorable for GSK-3α inhibition. 
Substituents at the 3-anilino ring such as 3-Cl, 4-Cl, 5-Cl, 3-
COOH, 4-OH, and 4-SCH3 were positively and 3-OH was 
negatively correlated with GSK-3α inhibitory activity. 

 Through Hansch QSAR analyses, they found that the 
GSK-3α inhibitory activity was enhanced by: 1. Electron-
withdrawing, bulky ortho substituents at 4-phenyl ring; 2. 4-
chloro substitution around anilino ring; 3. 3-anilino rather 
than 3-N-methylanilino derivatives; 4. Hydrophobic meta 
substituents on the anilino ring. Overall, QSAR models 13a 
and 14a suggested electronic and steric effects at the 4-
phenyl ring and hydrophobic effects at the 3-anilino or 3-N-
methylanilino ring were crucial. Their 2D-model (Fig. 8) 
illustrated these effects which are essential for binding of the 
maleimides to the GSK-3α enzyme. Their analysis had 
provided key information regarding ligand–target 

interactions which they believed will help medicinal 
chemists to design more potent GSK-3α inhibitors. 

3.2. 3D-QSAR and Docking of 3-anilino-4-phenylmalei-
mides 
 In this article [93] was reported 3D-QSAR analyses using 
CoMFA and CoMSIA and molecular docking studies on 3-
anilino-4-phenylmaleimides as GSK-3α inhibitors, in order 
to better understand the mechanism of action and structure-
activity relationship of these compounds. Comparison of the 
active site residues of GSK-3α showed that all the key amino 
acids involved in polar interactions with the maleimides for 
the β isoform were the same in the α isoform, except that 
Asp133 in the β isoform was replaced by Glu196 in the α 
isoform. They prepared a homology model for GSK-3α, and 
showed that the change from Asp to Glu should not affect 
maleimide binding significantly. Our best CoMFA model 
contained steric and electrostatic fields and had n = 56, q2 = 
0.844, r2 = 0.942, SEE = 0.104, F = 162.49 and r2

pred = 0.779 
for five components. CoMFA electrostatic contours revealed 
that increased negative charge at the meta position of the 4-
phenyl ring was favorable for the activity. They found that 
electron withdrawing groups at the meta and para positions 
around the anilino ring were important for enhancing 
activity. Electron-withdrawing bulky ortho substituents on 
the 4-phenyl ring were conducive to GSK-3α inhibition. 
CoMSIA model showed the importance of hydrogen bond 
donor groups on these ligands for enhanced activity. The 
best CoMSIA model (S + E + D) had n = 56, q2 = 0.833, r2 = 
0.932, SEE = 0.113, F = 111.67 and r2

pred = 0.803 for six 
components. Comparatively, 3-N-methylanilino derivatives 
were less active than 3-anilino derivatives. 

 Docking studies revealed the binding poses of three 
subclasses of these ligands, namely anilino, N-methylanilino 
and indoline derivatives, within the active site of the β 
isoform, and helped to explain the difference in their 
inhibitory activity. 

3.3. QSAR Studies of Some GSK-3α Inhibitory Pyrimidines 

 Jamloky et al. in this paper [22] studied a series of 
pyrimidines which was performed to gain structural insight 
into the binding mode of the molecules to the GSK-3α. The 
molecular modeling studies were performed using CS Chem. 

Table 4. The Results Produced by the Best CoMFA and CoMSIA Models 

QSAR descriptor (Di) 

  coefficient (Ri) error of coeff. t-value R2 R2 cv s2 F-value 

A 1 ¢GTH 3.1216 × 10-1 2.4686 × 10-2 0.799 0.774 1.05 93.36 

 2 RPCGEN 3.2582 × 101 6.9963     

  constant -4.1980 6.9930 × 10-1     

B 1 ¢GTH 2.7077 × 10-1 2.2926 × 10-2 0.859 0.838 0.76 93.17 

 2 RPCGEN 5.7129 × 101 8.1307     

 3 J -6.2410 × 10-1 1.4148 × 10-1     

  constant -4.6864 6.0281 × 10-1     

Standard deviations (s2), squares of the correlation coefficients (R2), and leave-one-out cross-validated correlation coefficients (R2
cv) of the regressions are tabulated. 
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Office 2001 molecular modeling software version 6.0. 
MOPAC module was used to minimized the energy and 
calculate of the descriptors. The thermodynamic and steric 
features of the pyrimidines were highly correlated with 
GSK-3α inhibitory activity. The positive coefficient of PMI-
Y in the model suggested the presence of bulky substituents 
oriented towards Y-axis of the molecule will enhance the 
GSK-3α inhibitory activity. The observation supports the 
hypothesis that the presence of the bulky substituents like 
bromine with inherent hydrophobic character may involve in 
nonspecific interaction with the ATP binding site. The 
results of the study suggested that introduction of bulky 
groups at C-5 position of the hydrophobic interaction with 
the ATP binding site of the enzyme. This may be attributed 
to the strain exerted by the two adjacent phenyl rings on the 
planar pyrazolo (3,4-b) pyridine ring thereby partly 
disrupting the hydrogen bonding interaction between 
nitrogen in the pyrazolo group and the complementary group 
in the enzyme. 

4. Studies of GSK-3β Inhibitors 

4.1. Design, Synthesis and Structure-Activity Relationships 
of 1,3,4-oxadiazole Derivatives 

 Saitoh et al. [94] reported design, synthesis and 
structure–activity relationships of a novel series of 
oxadiazole derivatives as GSK-3β inhibitors. Among these 
inhibitors, compound 20x (see Figure) showed highly 
selective and potent GSK-3β inhibitory activity in vitro and 
its binding mode was determined by obtaining the X-ray co-
crystal structure of 20x (see Fig. 9) and GSK-3β (see Fig. 
10). The hydrogen bonding interaction of the benzimidazole 
core with the hinge region and the oxadiazole with Asp200 
were observed. Additionally, interaction of 4-methoxyphenyl 
group with Arg141 was observed. 

4.2. Linear/Nonlinear Regression Methods for Prediction 
of Glycogen Synthase Kinase-3β Inhibitory Activities 

 Freitas et al. [95] realized linear/nonlinear regression 
methods as multiple linear regression (MLR), artificial 
neural network (ANN), and support vector machines (SVM) 
with a series of glycogen synthase kinase-3β (GSK-3β) 

inhibitors using calculated Dragon descriptors. Few variables 
were selected from a pool of calculated Dragon descriptors 
through three different feature selection methods, namely 
genetic algorithm (GA), successive projections algorithm 
(SPA), and fuzzy rough set ant colony optimization (fuzzy 
rough set ACO). The fuzzy rough set ACO/SVM-based 
model gave the best estimation/prediction results, 
demonstrating the nonlinear nature of this analysis and 
suggesting fuzzy rough set ACO, first introduced in 
chemistry here, as an improved variable selection method in 
QSAR for the class of GSK-3β inhibitors. MLR yielded 
QSAR models only reasonably predictable, with r2 ranging 
from 0.77 to 0.81 and r2

test of 0.67 to 0.76, ANN and 
specially SVM were capable of estimating and predicting 
biological activities very accurately. 
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Fig. (9). Structure of 20x. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. (10). X-ray co-crystal structure of 1 in complex with GSK-3β. 
 

4.3. Molecular Modeling, Docking and 3D-QSAR Studies 
for Maleimides 

 Hwan-Kim et al. [96] in this article carried out molecular 
modeling and docking studies with three-dimensional 
quantitative structure relationships (3D-QSAR) to 
determinate the correct binding mode of glycogen synthase 
kinase 3β (GSK-3β) inhibitors. For the 3D-QSAR (CoMFA 
and CoMSIA), they used 51 substituted benzofuran-3-yl-
(indol-3-yl)maleimides. Two binding modes of the inhibitors 
to the binding site of GSK-3β are investigated. The binding 
mode 1 yielded better 3D-QSAR correlations using both 

 
 
 
 
 
 
 
 
 
 
Fig. (8). Proposed model based on 2D-QSAR analyses showing the 
nature of interactions and substitution requirements for effective 
binding of 3-anilino-4-phenylmaleimides with the GSK-3α isoform. 
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CoMFA and CoMSIA methodologies. The three-component 
CoMFA model from the steric and electrostatic fields for the 
experimentally determined pIC50 values has the following 
statistics: R2(cv) = 0.386 and SE(cv) = 0.854 for the cross-
validation, and R2 = 0.811 and SE = 0.474 for the fitted 
correlation. F (3,47) = 67.034, and probability of R2 = 0 
(3,47)= 0.000. The binding mode suggested by the results of 
this study was consistent with the preliminary results of X-
ray crystal structures of inhibitor-bound GSK-3β. The 3D-
QSAR models were used for the estimation of the inhibitory 
potency of two additional compounds. 

4.4. Molecular Docking and Biological Testing of New 
Inhibitors of GSK-3β 

 Lavrovskii et al. [97] used in this paper a serie of new 
heteroaryl-substituted oxadiazole-5-carboxamide inhibitors 
of GSK-3β. Molecular docking was used for the rational 
selection of synthesized compounds for the subsequent 
biological testing. It was established that the inhibitory 
activity of the synthesized compounds strongly depends on 
the character of substituents in the phenyl ring and the nature 
of terminal heterocyclic fragments. The most active 
compounds inhibit GSK-3β at IC50 in the micro molar range 
and could be considered as potential drug candidates.  

4.5. 3D-QSAR Modelling of Paullones 

 Osolodkin et al. [98] realized 3D-QSAR study allows 
one to suggest ways of modification of the molecule to 
increase its physiological activity. Comparative molecular 
field analysis (CoMFA) [7] and comparative molecular 
similarity indices analysis (CoMSIA) [8] are among the most 
widely used 3D-QSAR methods. The energy of van der 
Waals and electrostatic interactions of a probe atom (with the 
charge +1) with molecules of the training set (CoMFA) or 
the electrostatic, van der Waals, hydrophobic, and 
donor/acceptor similarity indices (CoMSIA) were used as 
descriptors. The equation for activity prediction was derived 
using the partial least squares (PLS) method. The ability of 
graphic representation of PLS model coefficients was the 
advantage of the methods and allowed the user to suggest 
substitutions affecting activity and/or selectivity of the 
molecules. They had built a new 3D-QSAR model for GSK-
3β inhibition by paullones by means of CoMFA method. 
This model can be used as a guide for design of new 
paullone GSK-3β inhibitors. 

4.6. Modeling of Binding Mode of Benzo[e]isoindole-1,3-
diones 

 Yang et al. [99] synthesized benzo[e]isoindole-1,3-dione 
derivatives, and the effects on GSK-3β activity and zebrafish 
embryo growth were evaluated. A series of derivatives 
showed obvious inhibitory activity against GSK-3β. The 
most potent inhibitor, 7,8-dimethoxy-5-methylbenzo[e] 
isoindole-1,3-dione, showed nanomolar IC50 and obvious 
phenotype on zebrafish embryo growth associated with the 
inhibition of GSK-3β at low micro molar concentration. The 
interaction mode between this compound and GSK-3β was 
characterized by computational modeling. To rationalize the 
structure-activity relationships of these compounds, the 
binding modes of the most potent inhibitors 8a and 8b (see 
Fig. 11) were modeled using docking simulations. 

Compounds 8a and 8b were docked into the ATP binding 
site of GSK-3β, and the binding modes of lowest energy 
were analyzed. Compounds 8a and 8b fit the ATP pocket of 
GSK-3β well. The maleimide motif of type II formed a pair 
of hydrogen bonds with the hinge region (Glu133 and 
Val135) of GSK-3β, similar to the binding mode of other 
known maleimides GSK-3β inhibitors. The two methoxy 
oxygen atoms formed another two hydrogen bonds with the 
positively charged Lys85. The methyl group of the methoxy 
at C-8 position docked to the small back cleft of GSK-3β. 
This binding mode explicitly explained the important role of 
the two methoxy groups at C-7 and C-8 positions. Other 
result was the 4-ethyl group of 8b docks to the minor 
hydrophobic pocket formed by Ile62 and Val70 in the front 
of the ATP binding site of GSK-3β (Fig. 12), which 
contributed to its higher binding affinity compared to 8a. The 
docking results also provided a template to understand the 
structure-activity relationships of other compounds. 

 

 

 

 

 

 

 

 

Fig. (11). Structure of 8a and 8b. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). Docked binding modes of compounds 8b in the ATP 
binding site of GSK-3β. 
 

CONCLUSIONS 

 Theoretical studies such as QSAR models have become a 
very useful tool in this context to substantially reduce time 
and resources consuming experiments. The functions of β 
and γ-secretase and its implication in Alzheimer's disease 
have triggered an active search for potent and selective β and 
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γ-secretase inhibitors. In this paper we can see that the 
development of theoretical and QSAR models to study γ-
secretase inhibitors are usually not many achieved so far, and 
most of these works present docking studies. Watching this 
situation we need to develop QSAR models with γ-secretase 
inhibitors. In this sense, QSAR could play an important role 
in studying these γ-secretase inhibitors. QSARs can be used 
as predictive tools for the development of molecules. In this 
work we developed a new ANN RBF model using the 
ModesLab descriptors, based on a large database using about 
10,000 different drugs obtained from the ChEMBL server. 
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